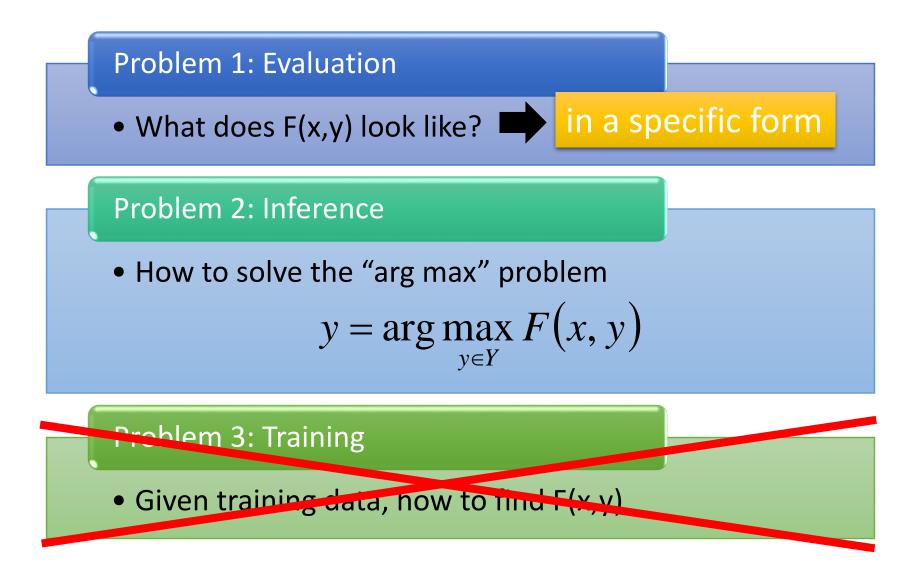
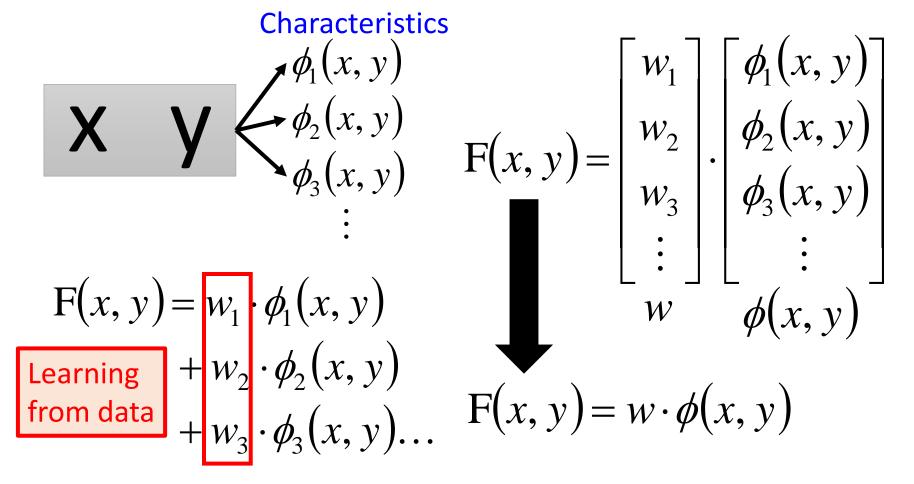
Structured Linear Model Hung-yi Lee

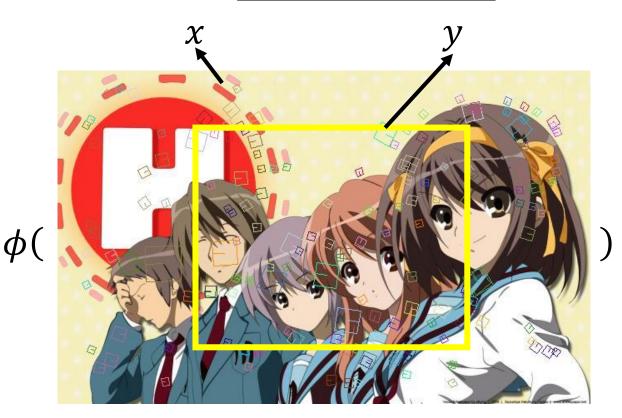
Structured Linear Model



• Evaluation: What does F(x,y) look like?



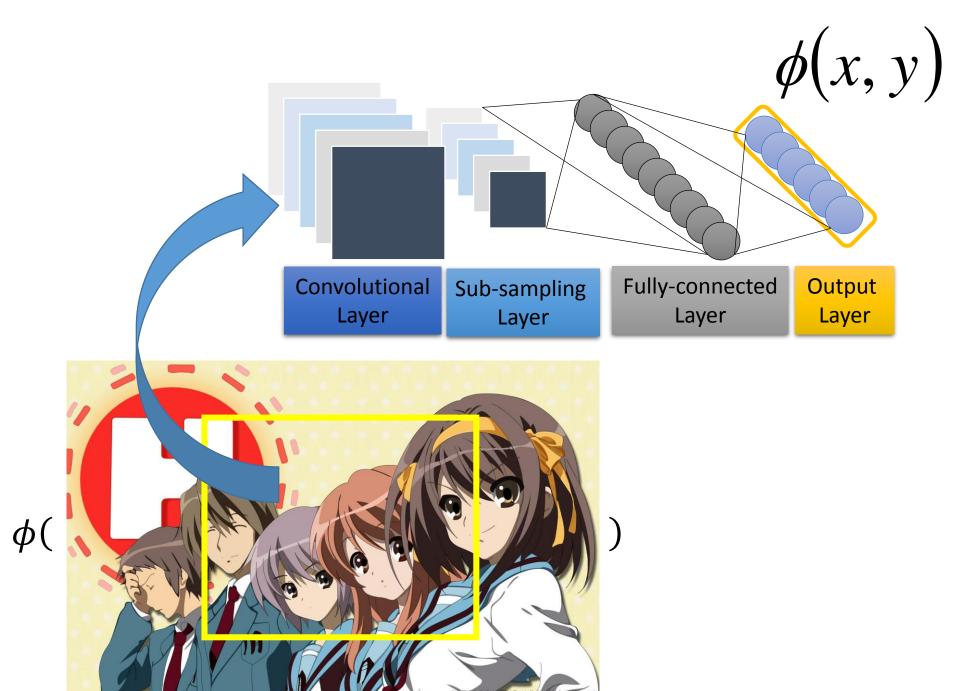
- Evaluation: What does F(x,y) look like?
- Example: *Object Detection*



percentage of color red in box y percentage of color green in box y percentage of color blue in box y

percentage of color <mark>red</mark> out of box y

area of box y number of specific patterns in box y



• Evaluation: What does F(x,y) look like?

• Example: *Summarization* Whether the sentence containing the word *"important"* is in y $\phi_1(x, y)$ Whether the sentence $\bullet \phi_2(x, y)$ X containing the word *"definition"* is in y $\phi_3(x, y)$ Length of y $\phi_4(x, y)$ How succinct is y? (a long (Short document) paragraph) How representative of y?

• Evaluation: What does F(x,y) look like?

 $\phi_1(x, y)$

 $\star \phi_{\gamma}(x, y)$

• Example: *Retrieval*

(Search

Result)

X

Google

Google Search I'm Feeling Lucky

(Input

keyword)

The degree of relevance with respect to x for the top 1 webpages in y.

Is the top 1 webpage more relevant than the top 2 webpage?

How much different information does y cover? (*Diversity*)

• Inference: How to solve the "arg max" problem

$$y = \arg\max_{y \in Y} F(x, y)$$

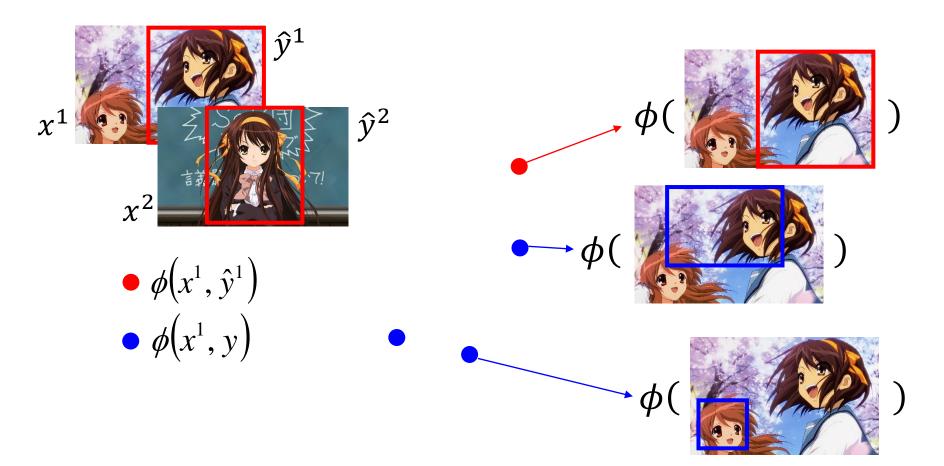
$$F(x, y) = w \cdot \phi(x, y) \qquad \qquad y = \arg \max_{y \in Y} w \cdot \phi(x, y)$$

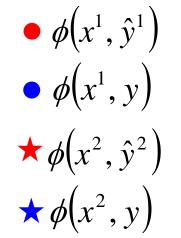
Assume we have solved this question.

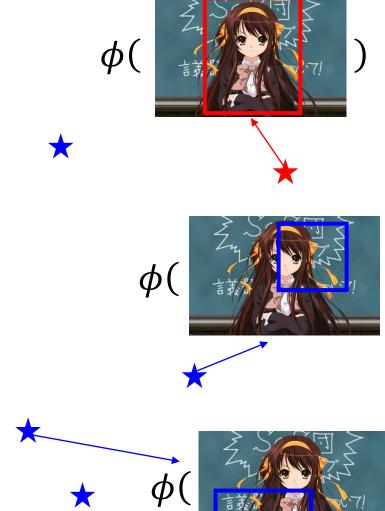
- Training: Given training data, how to learn F(x,y)
 - $F(x,y) = w \cdot \phi(x,y)$, so what we have to learn is w

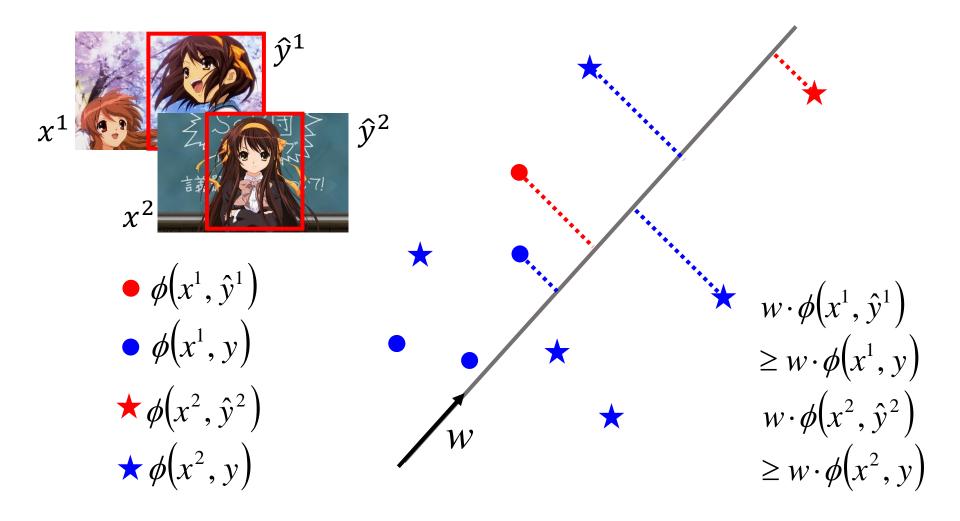
Training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^r, \hat{y}^r), \dots\}$ We should find w such that

 $\forall r \text{ (All training examples)} \\ \forall y \in Y - \{\hat{y}^r\} \begin{array}{l} \text{(All incorrect label} \\ \text{for r-th example)} \\ w \cdot \phi(x^r, \hat{y}^r) > w \cdot \phi(x^r, y) \end{array}$









Solution of Problem 3 Difficult? Not as difficult as expected

Algorithm

Will it terminate?

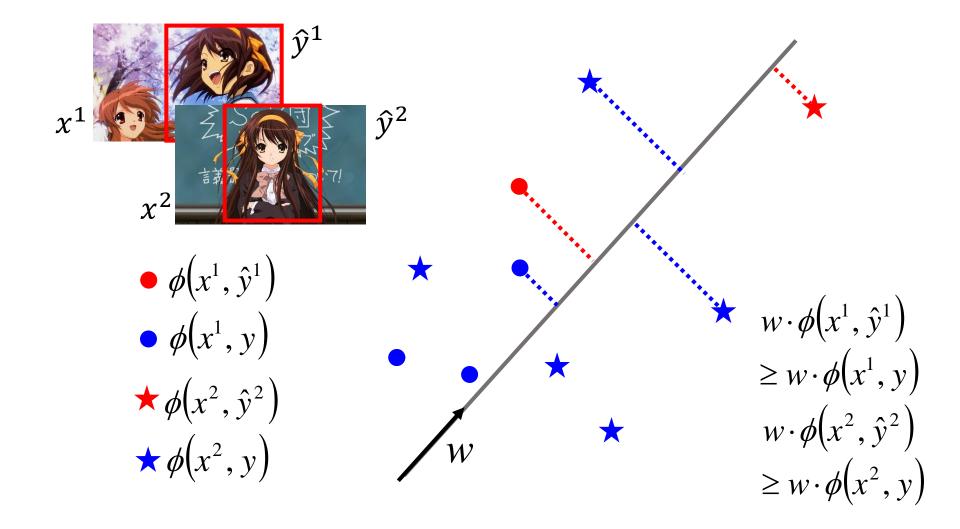
• Input: training data set
$$\{\!\! \left(\!\! x^1, \hat{y}^1 \right)\!\!, \!\! \left(\!\! x^2, \hat{y}^2 \right)\!\!, \dots, \!\! \left(\!\! x^r, \hat{y}^r \right)\!\!, \dots \!\!\}$$

- <u>Output</u>: weight vector w
- <u>Algorithm</u>: Initialize w = 0
 - do
 - For each pair of training example (x^r, \hat{y}^r)
 - Find the label \tilde{y}^r maximizing $w \cdot \phi(x^r, y)$ $\tilde{y}^r = \arg \max_{y \in Y} w \cdot \phi(x^r, y)$ (question 2)

• If
$$\tilde{y}^r \neq \hat{y}^r$$
, update w
 $w \rightarrow w + \phi(x^r, \hat{y}^r) - \phi(x^r, \tilde{y}^r)$

• until w is not updated We are done!

Algorithm - Example

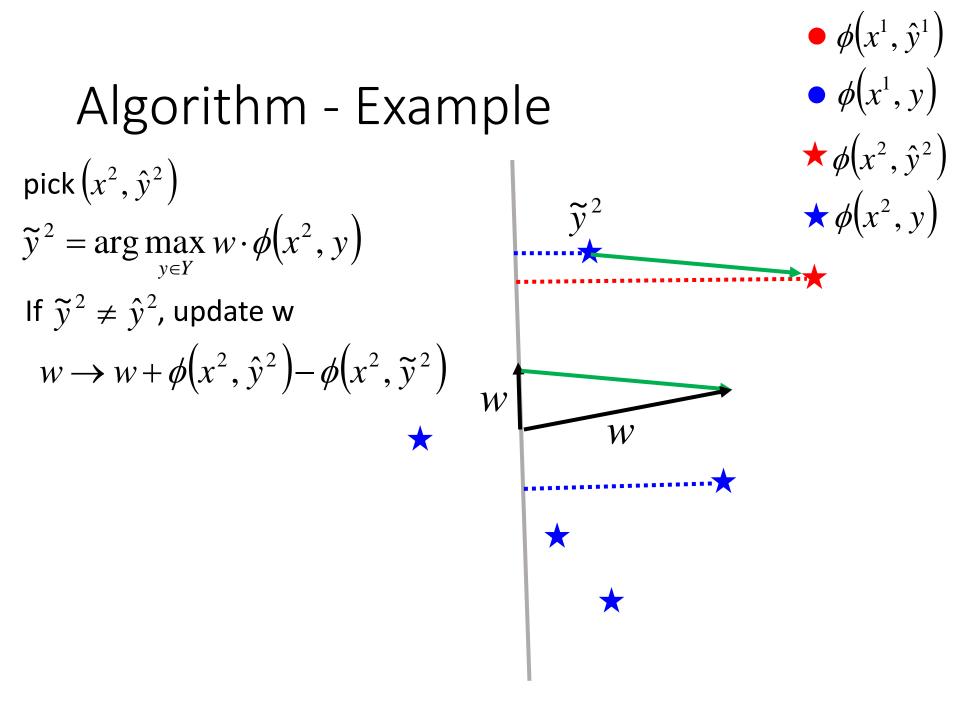


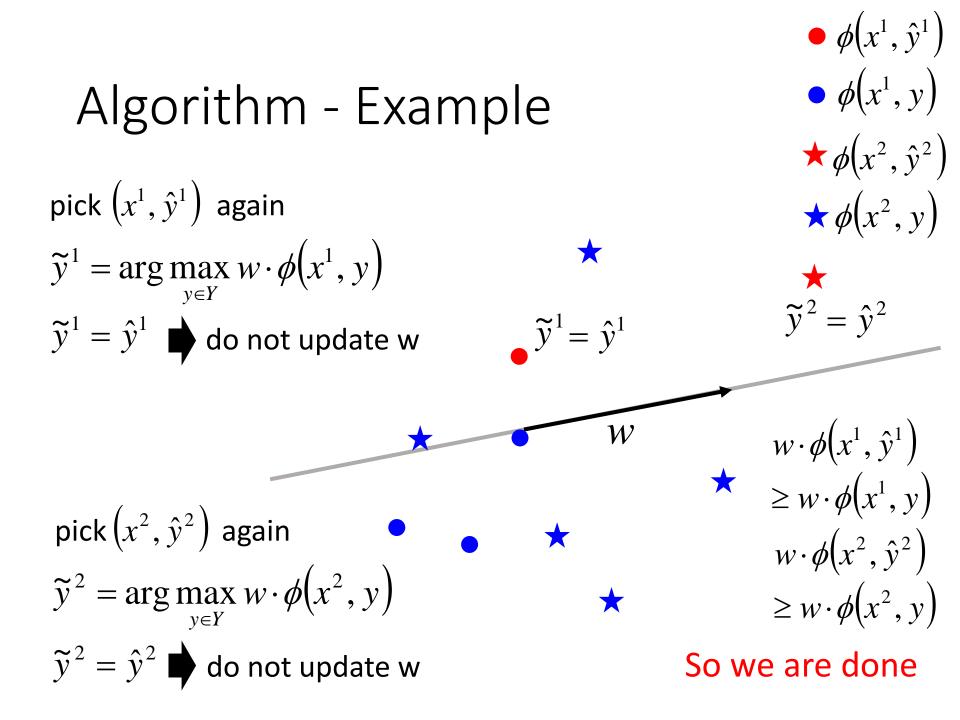
Algorithm - Example

Initialize w = 0 pick (x^1, \hat{y}^1) $\widetilde{y}^1 = \arg \max_{y \in Y} w \cdot \phi(x^1, y)$ If $\widetilde{y}^1 \neq \hat{y}^1$, update w $w \rightarrow w + \phi(x^1, \hat{y}^1) - \phi(x^1, \widetilde{y}^1)$ $w \qquad \widetilde{y}^1$ • $\phi(x^1, \hat{y}^1)$ • $\phi(x^1, y)$ * $\phi(x^2, \hat{y}^2)$ * $\phi(x^2, y)$

Because w=0 at this time, $\phi(x^1, y)$ always 0

Random pick one point as \tilde{y}^r





Assumption: Separable

• There exists a weight vector \widehat{w}

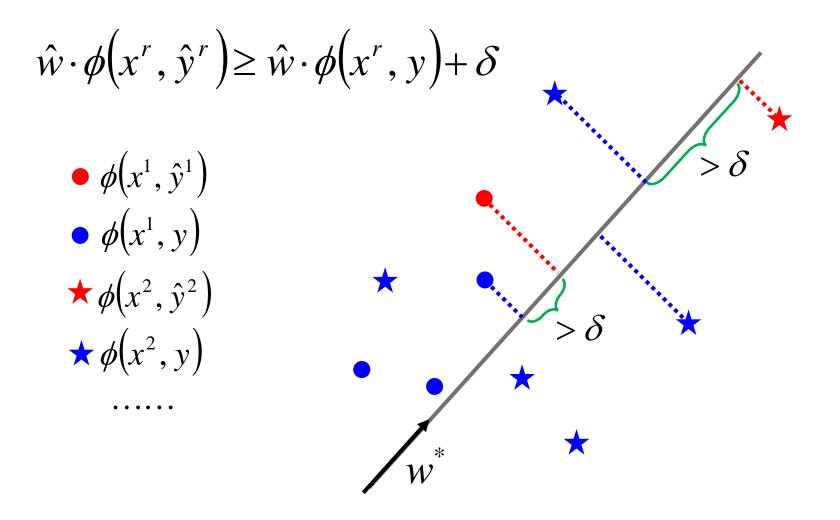
$$\|\hat{w}\| = 1$$

 $\forall r$ (All training examples)

 $\forall y \in Y - \{ \hat{y}^r \}$ (All incorrect label for an example)

$$\hat{w} \cdot \phi(x^r, \hat{y}^r) \ge \hat{w} \cdot \phi(x^r, y) \text{ (The target exists)}$$
$$\hat{w} \cdot \phi(x^r, \hat{y}^r) \ge \hat{w} \cdot \phi(x^r, y) + \delta$$

Assumption: Separable



w is updated once it sees a mistake

$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$
$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle ρ_k between \hat{W} and w_k is smaller as k increases

Analysis $\cos \rho_k$ (larger and larger?) $\cos \rho_k = \frac{|\hat{w} - w^k|}{||\hat{w}||} \cdot \frac{|\hat{w}||}{||w^k||}$ $\hat{w} \cdot w^k = \hat{w} \cdot (w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n))$ $= \hat{w} \cdot w^{k-1} + \hat{w} \cdot \phi(x^n, \hat{y}^n) - \hat{w} \cdot \phi(x^n, \tilde{y}^n) \ge \hat{w} \cdot w^{k-1} + \delta$ $\ge \delta$ (Separable)

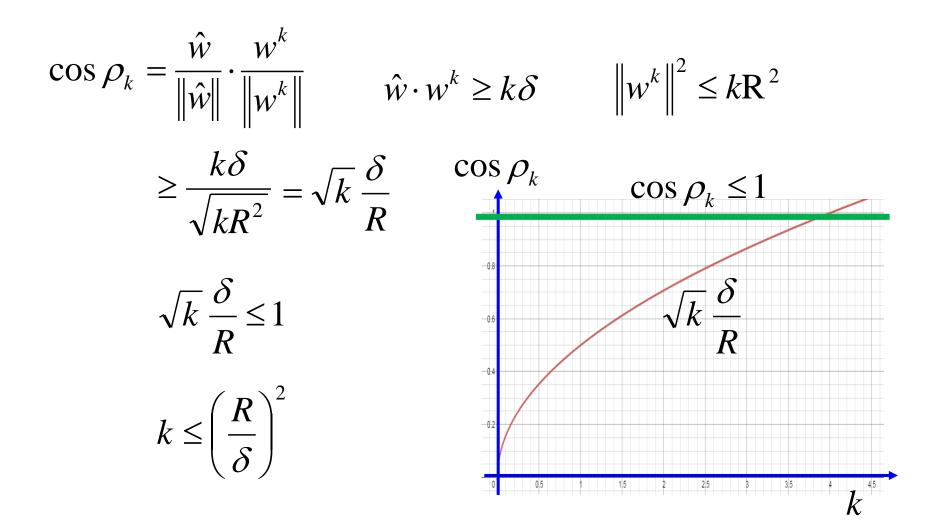
w is updated once it sees a mistake

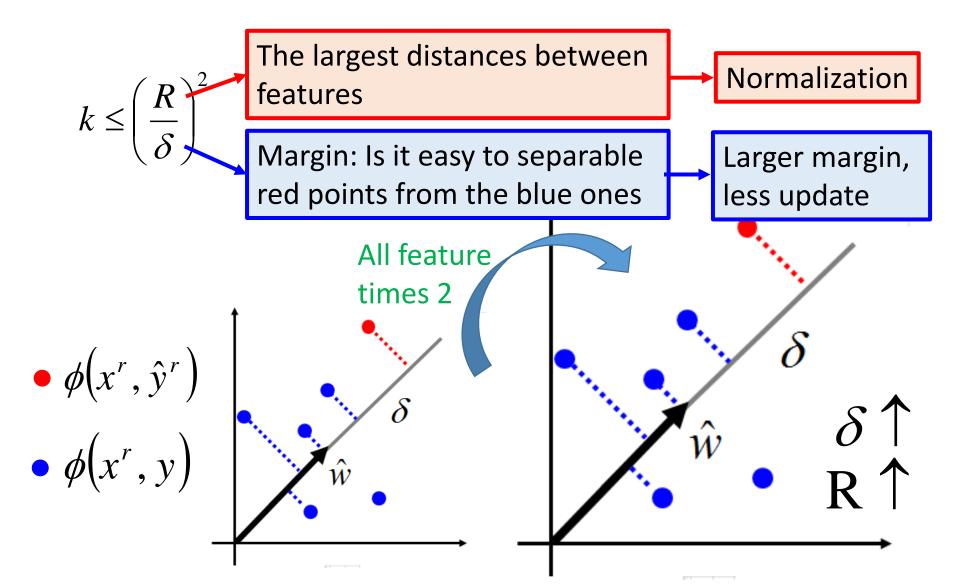
$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$
$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle ρ_k between \hat{W} and w_k is smaller as k increases

Analysis $\cos \rho_{k}$ (larger and larger?) $\cos \rho_{k} = \frac{\hat{w} \cdot w^{k}}{\|\hat{w}\| \cdot \|w^{k}\|}$ $\hat{w} \cdot w^{k} \ge \hat{w} \cdot w^{k-1} + \delta$ $=0 \qquad \ge \delta$ $\hat{w} \cdot w^{1} \ge \hat{w} \cdot w^{0} + \delta \quad \hat{w} \cdot w^{2} \ge \hat{w} \cdot w^{1} + \delta \cdots$ $\hat{w} \cdot w^{1} \ge \delta \qquad \hat{w} \cdot w^{2} \ge 2\delta \qquad \dots$ $\hat{w} \cdot w^{k} \ge k\delta$ (so what)

$$\cos \rho_{k} = \frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\|w^{k}\|} \qquad w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \\ \|w^{k}\|^{2} = \|w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n})\|^{2} \\ = \|w^{k-1}\|^{2} + \|\frac{\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n})\|^{2} + 2w^{k-1} \cdot (\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}))}{>0} \\ > 0 \qquad ? < 0 \text{ (mistake)} \\ \text{Assume the distance} \\ \text{between any two feature} \\ \text{vector is smaller than R} \qquad \|w^{1}\|^{2} \le \|w^{0}\|^{2} + R^{2} = R^{2} \\ \|w^{2}\|^{2} \le \|w^{1}\|^{2} + R^{2} \le 2R^{2} \\ \cdots \\ \|w^{k}\|^{2} \le kR^{2} \end{aligned}$$





Structured Linear Model: Reduce 3 Problems to 2

Problem 1: Evaluation

• How to define F(x,y)

Problem 2: Inference

 How to find the y with the largest F(x,y)

Problem 3: Training

• How to learn F(x,y)

$F(x,y)=w\cdot\varphi(x,y)$

Problem A: Feature

• How to define $\phi(x,y)$

Problem B: Inference

 How to find the y with the largest w·φ(x,y)